## Eureka!

rchimedes, the famous Greek scholar who lived in Syracuse, was frustrated by a problem the king had given him. The king suspected his goldsmith was cheating him; the king had given him gold to fashion a crown, and he thought the goldsmith was mixing in cheap metals. Archimedes knew that he had to



measure the volume of the crown to solve this problem, but it was in irregular shape. He went to relax and take a bath and think.

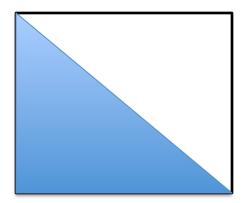
When he sat down in his bathtub, he noticed that the water level rose. The volume of water displaced, which could easily be easily, was exactly equal to the volume of his irregularly shaped body.

"Eureka!" He shouted, hopping out of his bath and running through the streets of Syracuse jubilant and naked. We are all familiar with this feeling, and call it many different things: "moment of clarity," "aha feeling," "light bulb moment," or "epiphany."

When have you had this feeling in your life? What did you realize or discover?

Encourage students to see the epiphany as something that goes beyond

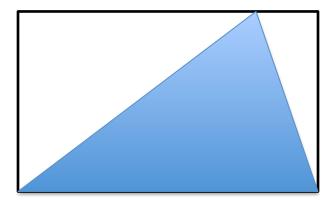
just math and science.


Explain the following sentence: "The haystack was important because the cloth ripped."

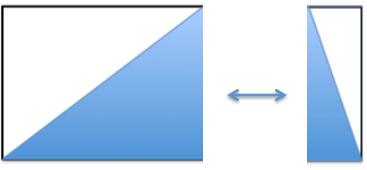
Wait a bit, and elicit a few responses. Ask them to cover it the sentence

and repeat it from memory. Then drop one word on the class: "parachute"

## Here is a very easy geometry problem:


1. What percent, or fraction, of the square below is shaded?

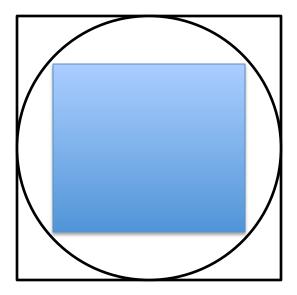



This should be obvious: 50% or 1/2

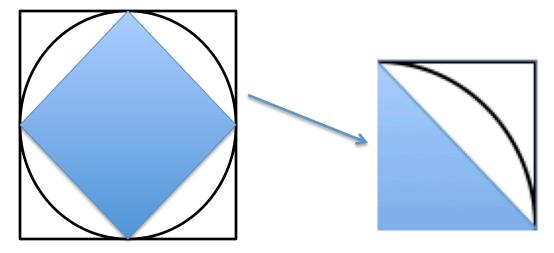
Here is a problem that is slightly more difficult, but should be just as easy:

2. What percent, or fraction, of the rectangle below is shaded?




Explain your answer. You can use algebra, but a visual solution will receive full credit:




When the image is split, the problem becomes as easy as the top problem: 50% or 1/2.

## A much harder, but related, problem:

1. In the figure below, the smaller square is inscribed in the circle and the circle is inscribed in the larger square. What fraction of the area of the larger square is the area of the smaller shaded square?



Work in groups, if necessary. Visual solutions receive full credit.



Turn the circle; focus on a quarter of the larger square. It is the same solution as #1: 50% or 1/2

2. You are presented with the following dataset. It is the result of a survey given to 30-year-old males. The researchers wanted to find out what causes happiness. Look at the data:

|          |        |        | Hours<br>Worked | GPA in  |         | Are you |
|----------|--------|--------|-----------------|---------|---------|---------|
| Name     | Salary | Weight | Per Day         | College | Married | happy?  |
| Jim      | 55K    | 145    | 5               | 3.8     | no      | no      |
| Joe      | 33K    | 178    | 9               | 3.9     | yes     | yes     |
| Sam      | 75K    | 190    | 3               | 2.5     | yes     | no      |
| Bill     | 125K   | 230    | 4               | 3.7     | no      | no      |
| Jamal    | 112K   | 185    | 10              | 3.1     | yes     | yes     |
| Steven   | 88K    | 300    | 2               | 2       | no      | no      |
| Eugene   | 32K    | 110    | 11              | 1.8     | yes     | yes     |
| Sol      | 12K    | 150    | 10              | 2       | no      | yes     |
| Chris    | 150K   | 152    | 9               | 3.2     | yes     | yes     |
| Peter    | 200K   | 143    | 10              | 4.1     | yes     | yes     |
| Chuck    | 68K    | 189    | 11              | 3.2     | yes     | yes     |
| Mohammed | 90K    | 190    | 5               | 3.1     | no      | no      |
| Aadil    | 45K    | 220    | 6               | 3.1     | yes     | no      |
| Rob      | 65K    | 210    | 5               | 2.9     | no      | no      |
| Philip   | 76K    | 176    | 8               | 3.4     | yes     | yes     |
| Mick     | 140K   | 173    | 5               | 3.5     | yes     | no      |
| Scott    | 43K    | 199    | 9               | 3.1     | yes     | yes     |
| Andre    | 28K    | 165    | 8               | 2.7     | yes     | yes     |
| Samuel   | 34K    | 164    | 9               | 2.8     | yes     | yes     |
| Stephen  | 41K    | 120    | 10              | 3.9     | no      | yes     |
| Lloyd    | 47K    | 197    | 13              | 2.1     | no      | no      |
| Leroy    | 75K    | 192    | 1               | 3.4     | yes     | no      |
| John     | 98K    | 175    | 5               | 3.4     | no      | no      |
| Maurice  | 49K    | 123    | 6               | 3.1     | no      | no      |
| Sergio   | 52K    | 142    | 7               | 2.3     | yes     | yes     |
| Sylvio   | 56K    | 187    | 8               | 2.2     | no      | yes     |
| Julius   | 190K   | 155    | 12              | 3.9     | no      | no      |
| Cletus   | 78K    | 156    | 10              | 3.4     | yes     | yes     |
| Harvey   | 23K    | 160    | 8               | 2.7     | yes     | yes     |

What causes these men to say that they are happy? What is your theory? Let the students run wild with the data. The correlation with happiness is

hours worked: everyone who worked between 7 and 11 hours said yes.

\_\_\_\_\_

Here is another difficult problem. Work in groups. If you solve it, describe how you came to the insight. If you do not solve it, continue working on it for homework.

3. You have been taking two medicines for a month. You must take one pill of each medicine per day. If you accidentally take two of the same pill, you will die. The pills for both medicines are blue and round and have nothing distinguishing them. When you have two days left, you drop the four remaining pills on the ground. They all look the same. You cannot buy more medicine, as the company has gone out of business. If you don't take your medicine, you will die. How can you be sure that you are taking the correct pills? ("I'll just risk it" is not an appropriate answer)

For the answer, contact nick@kurianconsulting.com